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Abstract

This work describes simple but comprehensive constitutive equations that model a number of
physical phenomena exhibited by dry porous geologicalmaterials and metals. Moreover, formulas
have been developed for robust numerical integration of the evolution equations at the element level
that can be easily implemented into standard computer programs for dynamic response of materials.

Introduction

Developing realistic mathematical constitutive equations to model the dynamic response of a
wide range of materials has been a main objective of research in continuum mechanics for the last few
decades. With ever increasing computational power of modern computers it has become more
practical to implement these nonlinear constitutive equations in real applications. The response of
structures to shock loading is a particularly challengingarea of research because the constitutive
equations must model fully coupled nonlinear thermomechanical effects near the shock source and
must model complicated features of the strength of the material far away from the source where the
pressures are relatively low.

Inelasticity in metals is due to dislocation motion whereas inelasticity in geologicalmaterials
is usually due to microfracturing which accompanies porous compaction and dilation. In spite of
these physical differences, the mathematical structure of plasticity theory seems to be capable of
capturing the main features of the response of both of these materials. In this paper, a set of
constitutive equations is briefly described which models a number of physical phenomena exhibited
by dry porous geological materials and metals. The equations are valid for large deformations and the
elastic response is hyperelastic in the sense that the stress is related to a derivative of the Helmholtz
free energy. Details of these equations can be found in Rubin et al (1998).

Constitutive modeling always requires compromises. On the one hand, attempts are made to
include details of relevant physical phenomena and on the other hand, attempts are made to develop
mathematically simple equations. For example, sometimes the constitutive equations are formulated
in terms of yield surfaces for distortional deformation and compaction surfaces for porosity. Such
equations are often difficult to satisfy numerically because they become nonlinear algebraicequations
which must be solved iteratively. Here, the equations developed in (Rubin, et al, 1996) are
reformulated as rate-type evolution equations. It will be seen that by proper choice of the functional
forms for these evolution equations it is possible to retain the main physical features of the algebraic

equations and at the same time develop robust numerical algorithms which integrate these evolution
equations explicitly.



Basic Thermomechanical Equations

The constitutive equations are developed using the thermodynamical procedures proposed by
Green and Naghdi (1977,1978). Within this context, the usual laws of conservation of mass and
balances of linear momentum, angular momentum and energy are supplemented by a balance of
entropy. The constitutive equations are then restricted so that the local forms of the balances of
angular momentum and energy are satisfied for all thermomechanical processes. Also, various
statements of the second law of thermodynamics place additional restrictions on the constitutive
equations. '

The notion of modeling elastic deformation through an evolution equation was introduced by
Eckart (1948), and has been discussed more recently by Rubin (1996). Here, the elastic response for
an elastically isotropic material is modeled by a measure of volumetric deformation J, and a measure
of distortional deformation B, , which are defined by the evolution equations
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where Ap characterizes the rate of inelastic deformation due to porous compaction and dilation and
characterizes the rate of inelastic distortional deformation. Also, J, is related to the total
volumetric deformation J by the formulas

=g 1 i=i[D-1], )

where ¢ is porosity in the present configuration and d is its reference value. Furthermore, the
quantities Ap and Ap are given by
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where Fp is a nonnegative function that controls viscoplasticity.

For simplicity, the specific (per unit mass) Helmholtz free energy function v is assumed to
be a function of the form

Y= W(Jeaalae) s (X'l = Be' | , (4)

where o; is an invariant measure of elastic distortional deformation and 6 is the absolute
temperature. Moreover, for a dry porous material the Helmholtz free energy y is assumed to equal
that y of the solid matrix material. Under these assumptions it can be shown that the pressure p
and the deviatoric part T' of the Cauchy stress T are determined by derivatives of y, with

T=—pI+T, TeI=0 . (5)

The functional form for y can be specified so that the pressure is consistent with a Mie-
Gruneisen type equation which is common in shock physics. Also, the evolution of elastic

distortional deformation (1), is controlled by viscoplasticity using a model of the type proposed by
Swegle and Grady (1985) such that
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where FpO is a material constant, G is the shear modulus, Y is the yield strength in uniaxial stress, Y|,
is a constant, G, is the von Mises stress and < x > are McAuley brackets. Specifically, the yield
strength Y is assumed to be a multiplicative function of the form

Y =Y, Fi(gp) F5(0) F5(€) Fy(B.p) F5(J,0) Fs(9) Fy(.p) . , )

The function F; depends on an equivalent plastic strain g and controls hardening; F, controls the
dependence on pressure; F5 controls the dependence on a measure € of damage due to distortional
inelasticity; F 4 controls the dependence on the Lode angle which characterizes the state of deviatoric
stress; Fg controls the dependence on porosity; and F, controls the dependence on a measure ® of
damage due to porosity changes during dilation or compaction.

Evolution equations for compaction and dilation of porosity have been proposed in (Rubin,

et al, 1998) for all modes of deformation. For example, one of these evolution equations for
compaction is given by

¢=—1"c<¢—¢z>50 for ¢max2¢*andp>pc’ ®)

where T'; and ¢" are constants, Omax 1 the maximum value of ¢ attained during the loading, p,, is a
function characterizing the pressure at which compaction initiates, and q): is a function that
characterizes the value of porosity during compaction. The evolution equation (8) has been proposed
instead of a compaction surface since the latter is usually a highly nonlinear algebraic expression
which must be solved iteratively. In contrast, by assuming the value of q): is constant during a time
step At, equation (8) can be integrated to give

0y =g + (0;—0p) exp{ —ALT } , (9)

where 0, is the value of ¢ at the beginning of the time step and ¢, is its value at the end of the time
step. This represents a robust solution of the evolution equation (8) because it always ensures that
porosity ¢ approaches the value 4):. In this regard, it follows that the functional form for (]): can be
specified to approximate the solution of any compaction surface. Consequently, if the value of T'; is
large enough then the solution (9) will remain close to the solution of the compaction surface even
though (9) is an explicit solution that requires no iteration.

The equations developed in (Rubin, et al, 1998) have been used to simulate experimental data
for compaction of Mt. Helen Tuff (Heard, et al., 1973) which is a geological material. They also have
been used to match an empirical formula for spall stress which fits experimental data (Kanel et al,
1997) for Aluminum subjected to high uniaxial strain rate. For example, Figure la shows a
comparison of the model with experimental data of Mt. Helen Tuff for pure dilatational
compression. In this figure, E is a measure of volumetric strain defined by

E,=J-1, (10)
and ¢ is a material constant that partially characterizes the function ¢z associated with compaction.
Also, Fig. 1b compares the predicted spall stress of Aluminum with the empircal formula (Kanel et



al, 1997) for uniaxial strain expansion with deformation rate D, and axial stress Ty;. In both of these
figures, n is a material constant that controls the spall process.
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Fig. 1 (a) Pure dilatational compression of a geological material; (b) Spall Stress of Aluminum.
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